Effects of Tail Geometries on the Performance and Wake Pattern in Flapping Propulsion
نویسندگان
چکیده
Swimming fishes exhibit remarkable diversities of the caudal fin geometries. In this work, a computational study is conducted to investigate the effects of the caudal fin shape on the hydrodynamic performance and wake patterns in flapping propulsion. We construct the propulsor models in different shapes by digitizing the real caudal fins of fish across a wide range of species spanning homocercal tails with low aspect ratio (square shape used by bluegill sunfish, rainbow trout, etc.) or high aspect ratio (lunate shape adopted by tuna, swordfish, etc.), and even heterocercal caudal fin adopted by sharks. Those fin models perform the same flapping motion in a uniform flow to mimic fish’s forward swimming. We then simulate the flow around the flapping fins by an in-house immersed-boundarymethod based flow solver. According to the analysis of the hydrodynamic performance, we have found that the lunate shape model (high aspect-ratio) always generates a larger thrust compared to other models. The comparison of the propulsive efficiency shows that the large aspect ratio fins (tuna and shark) have a higher efficiency when the Strouhal number (St) is in the range of steady swimming (0.20.4, in which the fish is accelerating or maneuvering. Finally, the 3D wake patterns of those propulsors are analyzed in detail.
منابع مشابه
Fish biorobotics: kinematics and hydrodynamics of self-propulsion.
As a result of years of research on the comparative biomechanics and physiology of moving through water, biologists and engineers have made considerable progress in understanding how animals moving underwater use their muscles to power movement, in describing body and appendage motion during propulsion, and in conducting experimental and computational analyses of fluid movement and attendant fo...
متن کاملPassive robotic models of propulsion by the bodies and caudal fins of fish.
Considerable progress in understanding the dynamics of fish locomotion has been made through studies of live fishes and by analyzing locomotor kinematics, muscle activity, and fluid dynamics. Studies of live fishes are limited, however, in their ability to control for parameters such as length, flexural stiffness, and kinematics. Keeping one of these factors constant while altering others in a ...
متن کاملOp-icbj120040 576..587
Synopsis Considerable progress in understanding the dynamics of fish locomotion has been made through studies of live fishes and by analyzing locomotor kinematics, muscle activity, and fluid dynamics. Studies of live fishes are limited, however, in their ability to control for parameters such as length, flexural stiffness, and kinematics. Keeping one of these factors constant while altering oth...
متن کاملComputational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure.
The slender body theory, lifting surface theories, and more recently panel methods and Navier-Stokes solvers have been used to study the hydrodynamics of fish swimming. This paper presents progress on swimming hydrodynamics using a boundary integral equation method (or boundary element method) based on potential flow model. The unsteady three-dimensional BEM code 3DynaFS that we developed and u...
متن کاملWake visualization of a heaving and pitching foil in a soap film
Many fish depend primarily on their tail beat for propulsion. Such a tail is commonly modeled as a twodimensional flapping foil. Here we demonstrate a novel experimental setup of such a foil that heaves and pitches in a soap film. The vortical flow field generated by the foil correlates with thickness variations in the soap film, which appear as interference fringes when the film is illuminated...
متن کامل